SEQENS

OUR SCIENCE FOR YOUR FUTURE

The power of Biocatalysis in the development of Active Pharmaceutical Ingredients

December, 5th 2024

Juliette Martin, PhD SEQENS Scientific Communication Manager

SEQENS is an integrated global leader

in health, personal care and specialty ingredients

>**€1,1BN**Revenue

c.3,300 Employees

1,500+ Clients

16 Manufacturing Sites

09Countries

09 R&D Centers

>300 Research scientists & experts (130

PhDs)

>12,000 SQM Lab surface

LABS
Up to 50L &
7 Pilot Plants

SEQENS Biotechnologies

Comprehensive global R&D platform with unique scientific skills

Complementary biotechnology solutions

Protéus by SEQENS

Equipment

1,000 sqm 1 kilo-lab 3 L, 40 l, 300 L fermentation DSP capabilities Robotic platform HTS

Product categories

Pharma solutions Cosmetics Food & feed Chemicals

Expertise

Biocatalysis services Enzyme screening Biocatalyst devpt. & optimization Biocatalysis scale-up Multi-tons manufacturing

Alganelle

Equipment

100 sqm Lab-scale production 3 L, 20 L & 30 L Photobioreactors DSP capabilities

Product categories

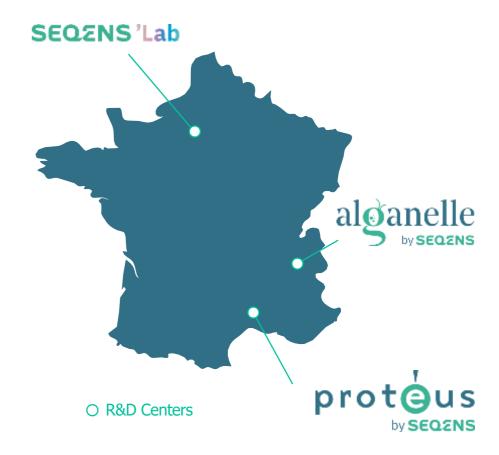
Pharma solutions Cosmetics Biomedicals Biomaterials

Expertise

Synthetic biology
Metabolic engineering
Microorganism engineering
(microalgae, bacteria, yeast)
Recombinant production
(metabolites, bioactive
peptides & proteins)

SEQENS'Lab

Equipment


5,000 sqm 3 kilo-lab suites 3 cGMP pilot plants (incl. 1 flowchem pilot) Robotic platform HTE

Product categories

Pharma solutions Specialty ingredients

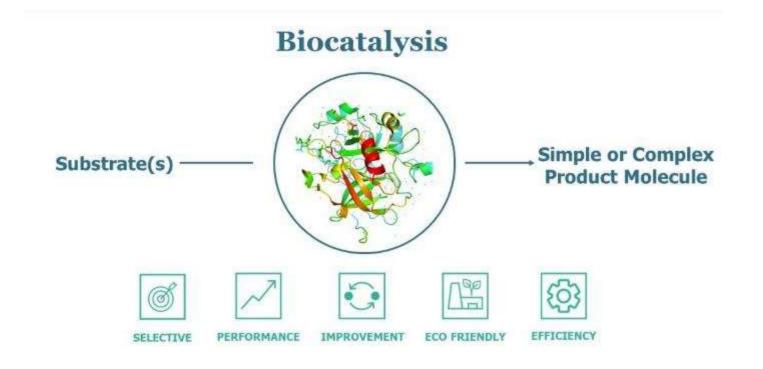
Expertise

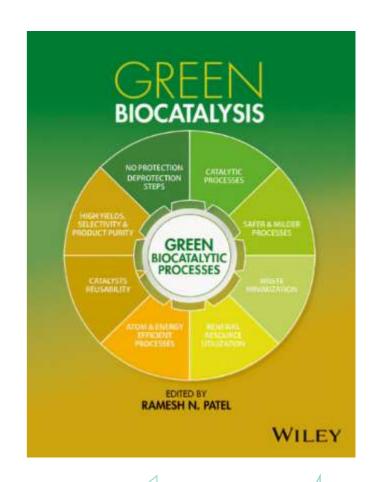
Flow chemistry Sloid-state design High potency API devpt. Analytical excellence Quality by design

Towards more Sustainable Manufacturing Process

In chemical industry, some key challenges include:

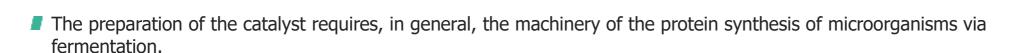
- develop more **sustainable** processes for chemical manufacturing (pharma, fine chemicals, active ingredients, etc...) within **greener synthetic steps** and **process intensification**.
- more pressure to accelerate the development stages for reaching competitive processes.

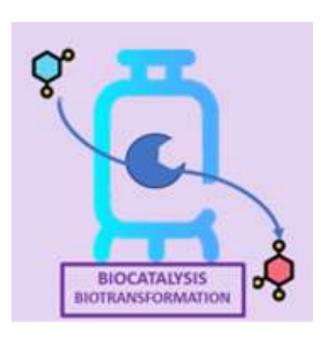




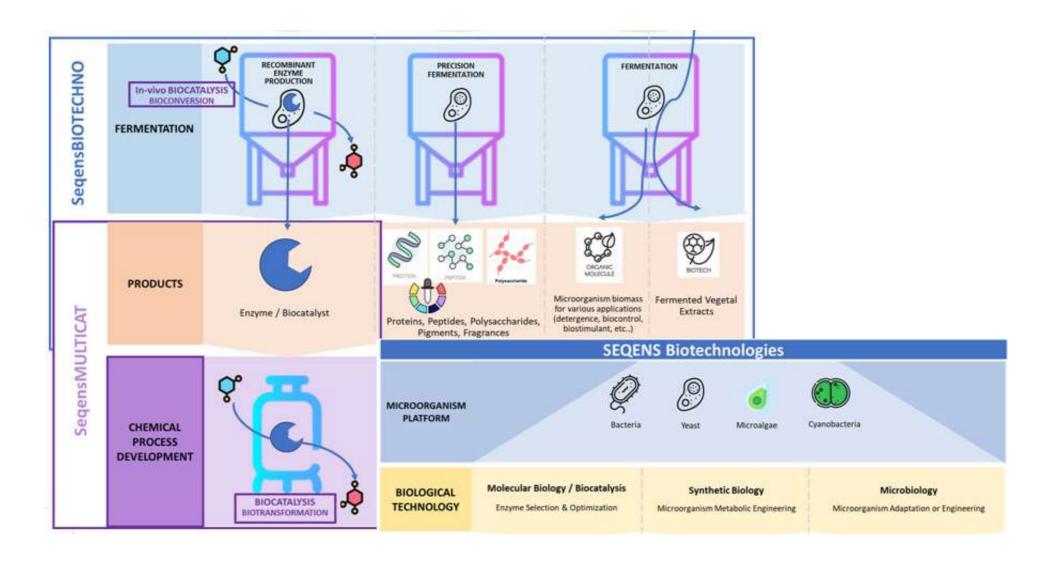
Access to wider reaction types

Biocatalysis means greener chemistry

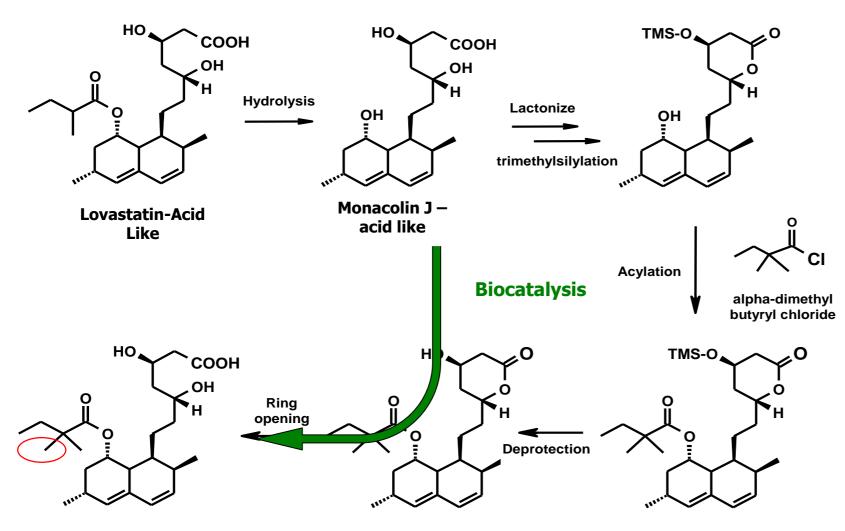



Biocatalysis in Organic Chemistry

Enzymes benefits for organic chemistry


- Green chemistry principles
- Operate in mild conditions
- Biodegradable and non toxic
- Enantio-, regio-, chemoselectivity
- The term biocatalyst is rather imprecise, as it is employed, for example, for:
- a wild-type organism,
- a **single** enzyme,
- a **crude** enzyme preparation,
- or an enzyme (preparation) **immobilized** on a carrier

■ The production of enzymes will take, in general, between few hours up to a few days, in one step process (pretty quick compared to multistep syntheses of some nonnatural ligands).


Using living machineries

The Power of Biocatalysis – Case study 1

Aspergillus terreus

- Reduce chemical steps: protection/deprotection, waste, purification steps
- Enzyme specificity avoid quality deviation (manufacturing)
- ✓ Cost reduction

Simvastatin-Acid Like

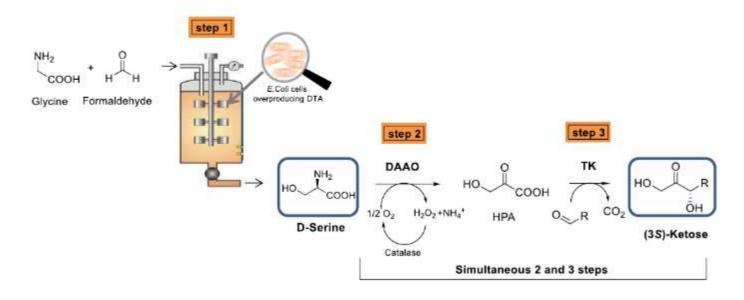
The Power of Biocatalysis – Case study 1

Within multicatalysis expertise, our chemists have designed a new acyl donor suitable with enzyme process operability

Benefits of Acyl-phosphonates (Technology patented by SEQENS)

- Low cost acyl donors, easy to produce,
- Acyl transferases accomodate acyl-phosphonates donors,
- Non reactive leaving groups.

Developing leaving groups synthesis with enzymes


Campopiano et al. Faraday Discuss., 2024,252, 174-187

Opportunity to investigate new protecting groups that are typically known in biocatalysis

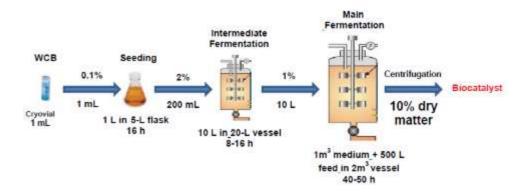
D-serine as a key building block: enzymatic cascades

p-Serine as a Key Building Block: Enzymatic Process Development and Smart Applications within the Cascade Enzymatic Concept

Nazim Ocal, Mélanie L'enfant, Franck Charmantray, Loredano Pollegioni, Juliette Martin,* Pascal Auffray, Jérôme Collin, and Laurence Hecquet*

Org. Process Res. Dev. 2020, 24, 5, 769–775

Multi-ton production using biocatalysis at Seqens: D-Serine


Seqenzym® AL

Glycine

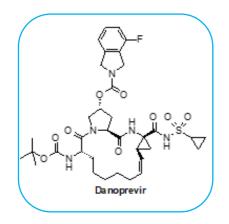
Parameters	Process Values
pH	$7 \pm 0,5$
$MgCl_2$	0.003 eq
PLP	0.05% w/w
Base	KOH 35.7%
Temperature	30°C
Conversion rate of both substrates	~90%

D-Serine

Biocatalysis developed as an alternative to conventional chromatographic separation process

High specificity: ee > 99,9%

High substrate concentration
> 30%


Enzyme fermentation at 15 m3-scale

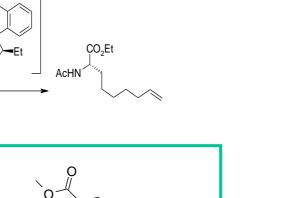
Enzyme impact on production cost is below 6%

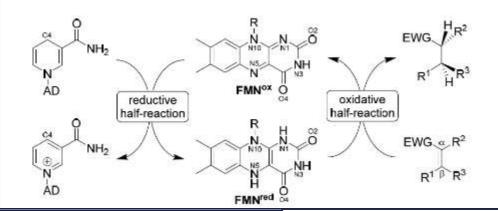
Enzyme residues in final product are under detection limit

ENE-REDUCTASE (ERED) for precious transition metal replacement

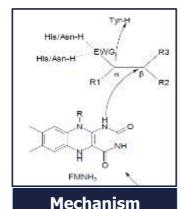
CO₂Et

AcHN


$$H_2$$
, EtOH


Yield 99%

ee > 99%


Ene reductases

NAD(P)H GDH/Glucose

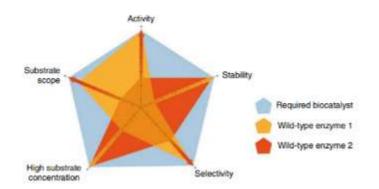
BocHN

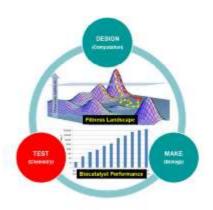
BocHN

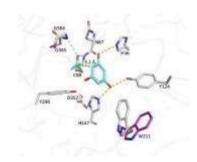
Aldehydes, ketones >>> carboxylic acids, nitriles, esters

- > ERED catalyse asymmetric CC double bond reduction
 - ⇒ Allow introduction of asymmetric center(s) on the targeted molecules

Substrate

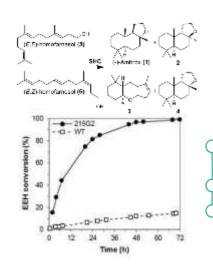

Gluconic acid


- Cofactors: FMN & NAD(P)H
 - ⇒ Require NAD(P)H recycling
 - Glucose dehydrogenase (GDH) with glucose can be utilized
 - Alternatives: ADH with isopropanol or FDH with formate


SEQENS

EWG: electron withdrawing groups

Industrial enzymes : reaching specifications (technico-economics)



Truppo, ACS Med. Chem. Lett., 2017.

Dynamic Modelling

Evolution & DoE

Smart evolution

Conversion obtained with 125g/L of substrate with the best variant

1x directed evolution

DoE x10 improvement

	Substrate conversion	
Improved enz1	~98%	
Enz1	~10%	
Enz2	~46%	
Enz3	~67%	
Enz4	~20%	
Enz5	~27%	
Enz6	~97%	

Pioneer in enzyme optimization

Tailored enzymes, development & scale-up of biocatalytic processes from lab to commercial scale

COFACTOR RECYCLING ENZYMES NAD(P)H oxidases 2 Formate dehydrogenases 2 Glucose dehydrogenase 1 L-lactate dehydrogenase 1 L-alanine dehydrogenase 1

(I)YDROLASES	
Dehalogenases	4
Epoxide hydrolases	11
Lipases	263
Nitrilases	14
Proteases	3
Phytases	2

PROTEIN & STRAIN DESIGN

AUTOMATION HTS

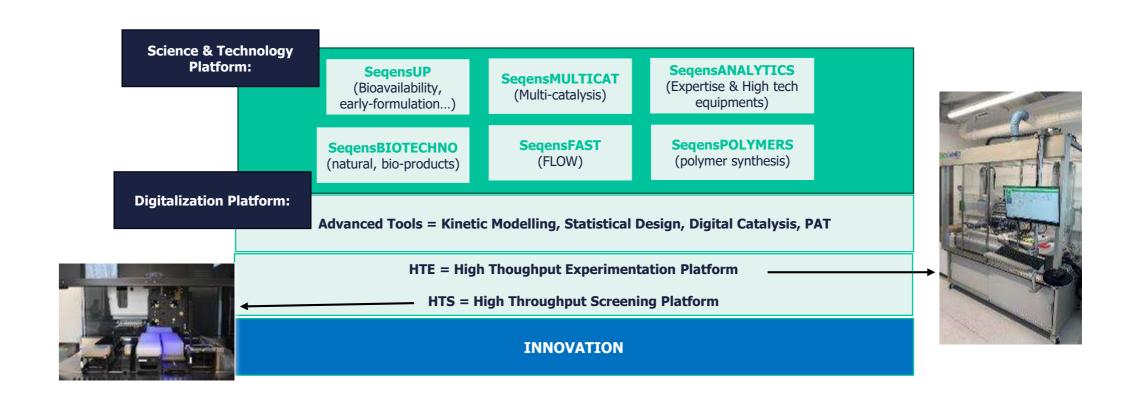
& HTE PLATFORMS

- · Enzyme modeling
- · Smart library design
- · Machine learning
- · Directed & Adaptative Evolution

DATA MINING

- · 650+ SEQENZYM enzyme collection
- 5000+ SEQENBIOTICS strain collection
- · In silico selection

Created in **1998** and within **SEQENS** since 2017



At Seqens, we foster Innovation & Collaborations

Worldwide leader in the development and the production of pharmaceutical active ingredients, intermediates and specialty ingredients

SEQZNS

OUR SCIENCE FOR YOUR FUTURE

Thank you for your attention!

juliette.martin@seqens.com

