4^{èmes} Rencontres académie-industrie du CNC
Les usines du vivant : Génération et Transformation de matériaux et de principes actifs.

Micro-organismes : des usines à nanominéraux

A.Cario, S.Marre, M.Tréguer-Delapierre

Institut de Chimie de la Matière Condensée de Bordeaux

ICMCB

Sciences des matériaux Chimie du solide

7 groupes de recherche / 12 services collectifs

- 1. Chimie & electrocéramiques
- 2. Energie: matériaux & batterie
- 3. Chimie & photonique
- 4. Composés intermétalliques
- 5. Chimie des nanomatériaux
- 6. Molécules & matériaux photo-commutables
- 7. Fluides supercritiques

Activités de recherche de l'équipe 'Chimie des nanomatériaux'

Assemblage par interactions contrôlées en clusters discrets ou réseaux étendus

Quelques exemples

Activités de recherche de l'équipe 'Fluides supercritiques'

Etudes des mécanismes thermo-hydro-bio-chimiques dans les milieux fluides réactifs sous P et en T

Etude in situ en conditions extrêmes

Les systèmes extrêmophiles permettent-ils de développer des **bioprocédés innovants** ? Peut-on bénéficier des apports de la **thermodynamique HP/HT** dans les bioprocédés ?

Bioproduction de nanoparticules

Plante, feuille, racine, tige

Champignon

Production intra- ou extra-cellulaire

Biotech. Adv., 2022, 55, 107914

Zoologie de nanoparticules

Métaux (Au, Ag, Cu, Se, Fe, Zn, Pd, Pt, Ni, Ti...) Chalcogénures (ZnS, CuS, Ag₂S, CdTe ...) Oxydes (Fe₂O₃, Fe₃O₄, TiO₂, ZnO, CuO, SiO₂, BaTiO₃, MnO...)

ZnŌ

MgO

CuO

Nature, 2023, 14, 5178, Nature nanotech., 2013, 8, 57 Nanoscale, 2024, 16, 4484, Sc. Reports, 2020, 10, 19996

Défis pour les chimistes

Synthèse bio-contrôlée de nanoparticules

Contrôle impératif de l'état de surface

Compréhension du mécanisme de bioproduction

Nanoscale, 2023, 15, 13886

Plantes, racines, tiges

Aloe vera, feuille de thé, hibiscus, citron, romarin...

Acide organique, quinone,

Alcaloïde, steroïde, flavonoïde, tanin...

Bactérie, champignons

Biotech. Advances 2022, 55, 107914

Algues

Source de matière première bio-renouvelable

Capacité exceptionnelle à accumuler les ions métalliques

Riche en metabolites secondaires (polysaccharides, protéines, peptides, pigments...)

Biomolecules 2020, 10, 1498

Compréhension du mécanisme de formation de NPs ?

Système modèle: algae Euglena Gracilis

Cliché R.Brayner

élevées

Etude de bioproduction ex situ et in situ

Puce microfluidique TEM en phase liquide

Puce microfluidique

Design idéal ?

Pyrex-Silicium 3 entrées (sel, algues et air) + 1 sortie 10 piscines (accueil des algues) Profondeur = 25 µm

Analyse in situ par microscope optique

Fabrication multi-étapes

Euglena Gracilis

Analyse *in situ* par microscopie optique

Nanoparticules Au_n sphériques et triangulaires éjectés dans le milieu de culture

Analyse ex situ par microscopie électronique

Etude cinétique (ex situ)

Coupe fine des algues

Sans AuCl₄-

Avec $AuCl_4^-$ (qq sec)

V : vacuoles, N: nucleus, Ch :chloroplast, Pa : paramylon, M : mitochondria, Ga : Golgi apparatus Echantillon après fixation avec OsO₄, UO₂(CH₃COO)₂, Pb(NO₃)₂ (coll. CBMN – Equipe O.Lambert) Modification de taille des vacuoles Synthèse des NPs Au_n à l'intérieur des cellules

Nanoparticules à l'intérieur de la cellule

Production Intra-cellulaire

Ejection d'un amas

Nanoparticules à l'intérieur de la cellule

Production Intra-cellulaire

Production extra-cellulaire

Suivi dynamique en temps réel par TEM

Le liquide est 'emprisonné' dans la cellule du porte-objet

Schéma de la tête du porte-objet -analyses in situ-(coll. IPCMS – Equipe O.Ersen)

Liquide = Algues + milieu de culture + $AuCl_{4}^{-}$

TEM en phase liquide

Analyse en accord avec les observations ex situ

Composition des nanoparticules

Nanoparticules composites riches en Au_n traces de Cu, Fe...

Mécanisme de bioproduction des NPs d'or

Processus rapide de nanoparticules mono-/multi-métalliques

Production intra- ou extracellulaire

Récupération dans le milieu de culture

Réactivité du milieu de culture réduite

Réutilisation possible des micro-algues comme bioréacteurs recyclables

Env. Res, 2022, 212, 113140

Conclusion

- Encore aux balbutiements
- Beaucoup de verrous identifiés restent à lever
- Beaucoup de verrous restent à identifier
- Problématique au cœur des nanosciences et de la chimie 'verte'

Remerciements

- C.Sanchez
- **CNRS** Chimie
- Nos étudiants et nos collaborateurs :
 - Equipe O.Lambert (CBMN)
 - Equipe O.Ersen (IPCMS)

